42nd COSPAR Scientific Assembly 2018 July 17, 2018

INVESTIGATION OF GAMMA IRRADIATON AS A PLANETARY PROTECTION MICROBIAL REDUCTION PROCESS

PI: Laura Newlin

Co-I: Fei Chen

Zachary Dean

Raffaele Gradini

Charlotte Spry

Kristina Stott

Jet Propulsion Laboratory/California Institute of Technology Pasadena, CA

Agenda

- Background Information
 - Planetary Protection (PP)
 - O What is Gamma Irradiation?
 - Need for Gamma Irradiation
- Methods
- Results
- Conclusion and Recommended Future Investigations
- Acknowledgements

Background Information: Planetary Protection

What is Planetary Protection (PP)?

- To protect the planets (and science) by preserving them as a target of biological exploration
 - Includes forward (outbound) and backward (Earth return) missions
 - Prevents false positive findings by life detection missions

Meeting the Biological Cleanliness requirements for Mars and Icy satellites:

- In order to meet the PP requirements
 - Spacecraft components need to be cleaned / microbially reduced and protected from recontamination
 - Biological cleanliness is a key / driving requirement throughout the entire lifecycle of the project—from Pre-Phase A until spacecraft disposal.

Background Information: Planetary Protection

Need:

- Heat Microbial Reduction (HMR) is the primary microbial reduction method
- Gamma provides penetrating microbial reduction alternative for hardware sensitive to HMR:
 - Antennas
 - Batteries
 - Reaction wheel lubricants
 - Etc.

Background Information: Gamma Irradiation

- Alpha particles are larger—2 protons and 2 neutrons (charged helium atom)
- Beta particles are electrons
 - Also break bonds (ionizing)
 - Less penetrative than gamma, more than alpha
- Gamma is <u>photon</u> energy
 - Same as light energy (UV radiation, etc.), but gamma rays carry <u>much</u> more energy
 - Unlike UV, gamma breaks molecular bonds

Background Information: Gamma Irradiation

- Typically carry energy > 100keV
- Important:
 - Typical gamma sources <u>do</u>
 <u>not</u> cause hardware to

 become radioactive
 - The energy is too low

Background Information: Need

Heat microbial reduction (HMR):

- NASA PP approved protocol
- Can treat bulk and surfaces of hardware

Vapor hydrogen peroxide (VHP):

- NASA PP approved protocol (use less common than HMR)
- Can only treat hardware surfaces

Gamma Irradiation (λ):

- NASA PP protocol not yet established
- Can treat bulk and surfaces of hardware
- Useful for Jovian missions, for hardware not compatible with heat (chemical reactions, etc.), and when more microbial reduction is needed than HMR can provide alone

Background Information: Need

Advantages	Disadvantages
Low Temperature	Not Validated
Predictable and Repeatable	Cost
No Radiation Byproduct or Residual	Polymers & glasses can be affected*
No Further Process Required	Radioactive source
Volumetric	
Time	

^{*} Polymers which are radiation stable are very expensive

Bioburden Quantification Bioburden Reduction Avoiding Recontamination Validation (medical)

Methods

- Selected organisms based on the following criteria:
 - Known radiation resistance
 - Desiccation resistance
 - Heat resistance
 - Available in the JPL PP archive
- Both spore formers and non-spore formers were selected:
 - Deinococcus radiodurans (most radiation resistant organism known)
 - Bacillus pumilus (gamma indicator organism)
 - Bacillus atrophaeus, ATCC 29669 (heat indicator organisms)
 - Geobacillus stearothermophilus (VHP indicator organism)
- Overall goal:
 - Determine dose to eliminate extremophiles, assess D-values

Methods

• High-level procedure:

Results

Preliminary results (curves end where no growth occurred)

Vegetative Survival Curve

Spore Survival Curve

Results

- Preliminary results (no growth at 4, 6 Mrad)
 - D. radiodurans is the most radiation resistant organism known

Results

Literature Study on Results (courtesy Reuhle, M. & Park, H.):

Conclusion and Recommended Future Investigations

Conclusion

- Gamma Irradiation is a viable protocol that is useful for microbial reduction
 - Particularly in situations where HMR is not possible

Recommended Future Investigations

- Materials compatibility
 - Only requires a dosimeter (no organisms)
 - Effective measurement of maximum dose that hardware can take
- Determine exposure needed for reduction in bulk materials
- Establish NASA PP approved protocol for gamma irradiation as a sterilization modality

Acknowledgements

- The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology
- The JPL team contributing to this study were: Zach Dean, Laura Newlin, Kristina Stott, Fei Chen, Raffaele Gradini, and Charlotte Spry.

Back-up Slides

Radiation Dosimeters (cont'd)

- Used for for chamber and dosevalidation
- Inexpensive: \$1236 per 1000
- 0.5 5 Mrad dose range (matches our required range)
- Easy to use:
 - Spectrometer measurement
 - Small, can be attached to H/W easily
- Quality-controlled:
 - Each batch is calibrated (and shipped with calibration curve) at the National Physical Laboratory (Teddington, England)
 - Curve (bottom-left)
- Used by Steris

Radiation Dosimeters (cont'd)

Dose distribution within a Co-60 irradiator (each is unique)

Dosimeters placed in 3D configuration on hardware

- Positioned around hardware to determine actual maximum dose received during sterilization
 - To compare this number to the sterilization dose required
- Uniformity of dose distribution (dose-mapping) on hardware also measured
 - Dose Uniformity Ratio = Max Measured Dose / Min Measured Dose
 - Always > 1, but should not increase over 2
 - More 3-D resolution needed for more complex hardware

Radiation Dosimeters (cont'd)

Dose distribution within a Co-60 irradiator (each is unique)

Dosimeters placed in 3D configuration on hardware

- Reference dose-mapping <u>can</u> be done with surrogate H/W (reference hardware)
 - Done to simulate product placement in packaging (bagging, etc.)
 - Prevents recontamination retrieving dosimeters after H/W exposure in gamma
 - However, must be in triplicate
- New mapping should be done when irradiator rack is changed
- Plan for gamma materials testing this summer will use surrogate H/W
 - No organisms

D-Value – Deinococcus radiodurans

D-Value – Acinetobacter radioresistens WC-A-157

D-Value – Staphylococcus epidermidis strain F71028

D-Value – Bacillus atrophaeus (vegetative cells)

D-Value – ATCC 29669 (vegetative cells)

D-Value – Geobacillus stearothermophilus (vegetative cells)

